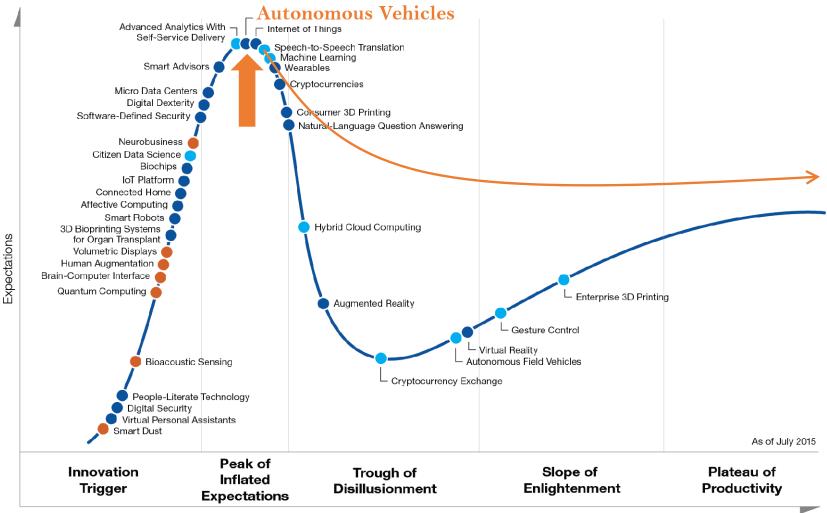
Efficiency, intelligence and autonomy:

Maximising the carbon benefit from transport innovations

Dr Zia Wadud, Associate Professor and **Prof Jillian Anable,** Chair of Energy and Transport Institute for Transport Studies, University of Leeds @ITSLeeds

Automated Vehicles: Automatically Low Carbon?

Zia Wadud

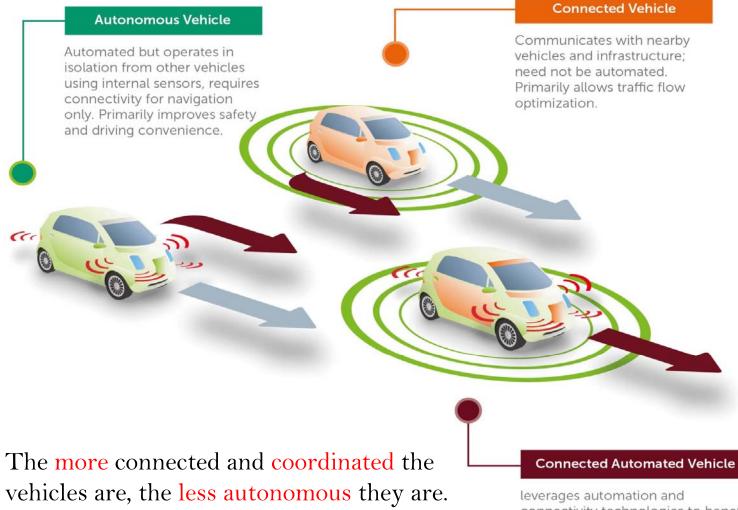

Centre for Integrated Energy Research & Institute for Transport Studies

Jillian Anable

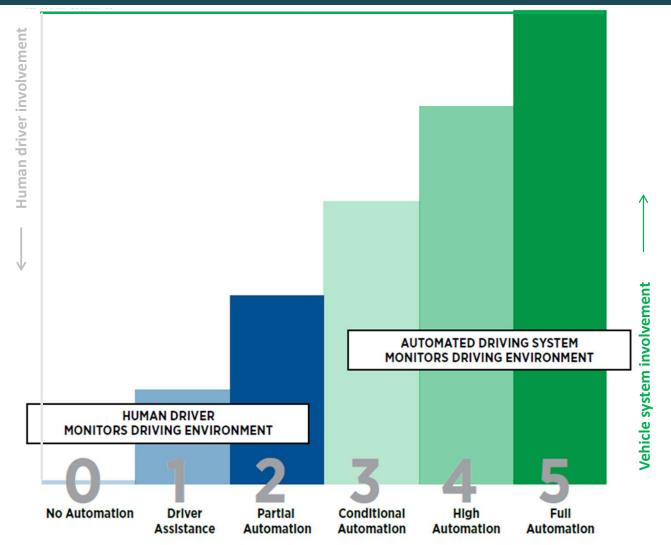
Institute for Transport Studies

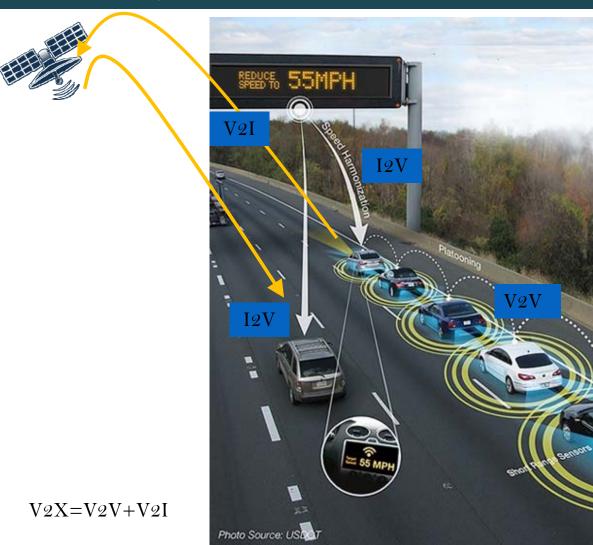
LowCVP Conference, June 2016

Technology Hype Cycle!


Objectives

- What are the potential travel, energy and carbon impacts?
- Do we let market decide the development? Or, do we need to plan ahead to reap the carbon benefits?
- What are the key areas that require attention from policymakers?


Autonomous, automated, connected?

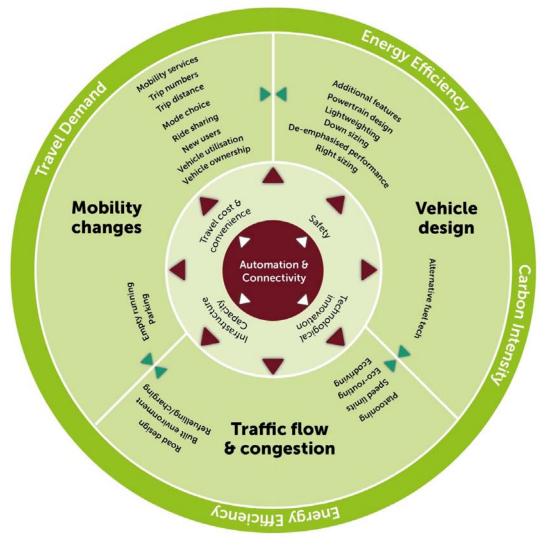


connectivity technologies to benefit from both, but with less autonomy.

Levels of automation

Connectivity & coordination

Carbon equation



emissions

travel demand energy efficiency of travel carbon intensity of energy

Carbon, energy & travel ripple

Energy efficiency

Mechanisms	Energy effects	Automation level	Connectivity level			
Traffic flow improvement	✓		V2X			
Eco-routing	\checkmark		V2X			
Eco-driving	✓		V2X			
^S ^I Early benefits from connectivity and connectedness						
 Potentially large benefits at high levels of automation and connectivity, but these benefits are highly uncertain, too and depends on innovations in other areas 						
De-emphasized performance	\checkmark		I2V			
Lightweighting	\checkmark		V2X			
Rightsizing	$\checkmark\checkmark\checkmark$		V2I, I2V			

Travel demand

Mechanisms	Energy effects	Automation level	Connectivity level
Distances (location choice)	XX		I2V
Modal shift	XXX		I2V
Trip number	X		I2V
New user groups	X		I2V, V2I
Mobility on demand, MaaS	111 ×		I2V, V2I
Empty running	X		I2V, V2I

- •Small impact at low levels of automation
- •Step changes at high levels of automation
- •Large uncertainty at high levels of automation
- •Car ownership vs. car-share/mobility services major uncertainty

Synergy with low carbon fuels

- Automation does not automatically mean EVs or FCVs, but several synergies between automation and low carbon fuel
- Unattended refuelling/recharging : annoyance reduced
- High utilisation in a mobility services future: cost efficiency
- Lightweighting allows more batteries: range anxiety reduced
- ... all related to full (driverless) automation
- Automatic electric driving for HEVs/PHEVs using Geofencing

Conclusions & policy pointers

Planning & coordination of stakeholders needed to align individual mechanisms toward the desired outcome

Incentivize manufacturers to provide efficiency optimizing features Establishing data safeguarding & sharing protocols, and provisions for smart connectivity vital at early stages of development

Demand management key to mitigate any increases in car use -Road user charge, LEZs, regulation of empty running Support for new mobility services

Incentivize/limit sales and use of highly or fully automated cars to vulnerable users, mobility & transport service providers, or, only for low carbon propulsion

Public engagement necessary for acceptance & positive use behaviours

Automated Vehicles: Automatically Low Carbon?

..... Not yet, but holds promise!!

Thank you

Conclusions

- Planning & coordination of stakeholders needed to align individual mechanisms toward the desired outcome
- Establish data safety & sharing protocol to ensure smart connectivity at early stages
- Demand management will be required to mitigate against potential net increase in travel demand
- Policies to provide direction toward shared mobility services
- Beware of unintended travel & energy effects!!

Energy effect Automation level **Connectivity level** Mechanisms Remarks direction & size required required Traffic flow Step change at \odot 1-5 \odot ____ V2X-2 way 1-5 \odot 2-5 \odot 2-5 \odot 3-5 Additional comfort \odot 3-5 **De-emphasized** ••• 4-5 \odot V2X-2way 4-5 $\odot \odot \odot$

Carbon emissions

Carbon emissions

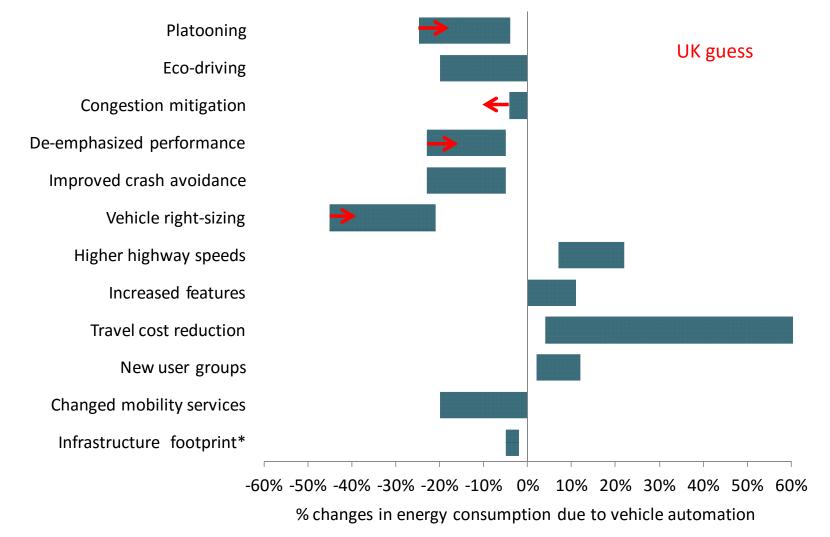
Table 2: Potential mechanisms for changes in travel demand due to automation and connectivity and their energy effects (adapted from Wadud et al.) ^{iv}

Mechanisms	Energy effect direction & size	Automation level required	Connectivity level required	Remarks
Distances travelled (location choice)	88	2-5	12V	Step changes at levels 4-5
Modal shift	888	3-5	12V	Step changes at levels 4-5
Trip Numbers	:	3-5	12V	Step changes at levels 4-5
New user groups	8	4-5	12V, V2I	Primarily at Level 5
Mobility on Demand	ଡଡଡଡ/ଞ		12V, V2I	Right-sizing needed for large reduction
Empty running of vehicles	:		12V, V2I	Only at Level 5

Reduction in energy use.

🙁 Increase in energy use.

Mechanisms for energy effects



Fallback System Monitoring Steering, Capability SAE Performance of Name acceleration, Driving (Driving level **Dynamic Driving** deceleration Environment Task Modes) No automation . . The full-time performance by the human 0 driver of all aspects of the dynamic driving task, even when enhanced by warning or intervention systems **Driver** assistance The driving mode-specific execution by a 0 driver assistance system of either steering or Some driving 1 6_0 acceleration/deceleration using information modes about the driving environment and with the expectation that the human driver perform all remaining aspects of the dynamic driving task Human **Partial automation** The driving mode-specific execution by one or more driver assistance systems of both . 20 steering and acceleration/deceleration using Some driving 2 information about the driving environment modes and with the expectation that the human driver perform all remaining aspects of the dynamic driving task **Conditional automation** The driving mode-specific performance by an automated driving system of all aspects of the 3 $(\bigcirc$ dynamic driving task with the expectation that the human driver will respond appropriately to a request to intervene **High automation** The driving mode-specific performance by an Car monitors envi automated driving system of all aspects of the Some driving 4 6_0 6_0 ്ര_ര് dynamic driving task, even if a human driver modes does not respond appropriately to a request to intervene **Full automation** The full-time performance by an automated 5 driving system of all aspects of the 5 6_0 ര_ര് dynamic driving task under all roadway and environmental conditions that can be managed by a human driver

Carbon emissions

Results (USA)

